MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.
701 ) A valid Lewis structure of $\qquad$ cannot be daannwithout violating the octet rule.
A) $\mathrm{NF}_{3}$
B) $\mathrm{PF}_{3}$
(C) $\mathrm{IF}_{3}$
D) $\mathrm{SbF}_{3}$
E) $\mathrm{SO}_{4}{ }^{2-}$

78 2) In the molecule below, which atom has the largest partial negative charge $\qquad$ ?

A) Cl
B) C
D) I
E) Br


72 3) In order to produce $\mathrm{sp}^{3}$ hybrid orbitals, $\qquad$ s atomic orbital(s) and $\qquad$ p atomic orbital(s) must be mixed.
A) two, two
B) two, three
C) one, one
D) one, two
E) one, three

72 4) In counting the electron domains around the central atom in VSEPR theory, a $\qquad$ is not included.
A) nonbonding pair of electrons
B) double covalent bond
C) cgre level electron pair
D) single covalent bond
E) triple covalent bond

76 5) The molecular geometry of the $\mathrm{PHCl}_{2}$ molecule is $\qquad$ .
A) tetrahedral
B) bent
C) tiigonal pyramidal
D) tigonal planar
E) T-shaped

73 6) Consider the molecule below. Determine the hybridization at each of the 3 labeled atoms.

A) $1=\mathrm{sp}, 2=\mathrm{sp}^{2}, 3=\mathrm{sp}^{2}$
B) $1=\mathrm{sp}^{2}, 2=\mathrm{sp}^{3}, 3=\mathrm{sp}^{2}$
C) $1=\mathrm{sp}^{3}, 2=\mathrm{sp}^{3}, 3=\mathrm{sp}^{3}$
D) $=\mathrm{sp}^{2}, 2=\mathrm{sp}^{3}, 3=\mathrm{sp}^{3}$
E) $1=\mathrm{sp}^{3}, 2=\mathrm{sp}^{3}, 3=\mathrm{sp}^{2}$

91 7) The Lewis structure of $\mathrm{PF}_{3}$ shows that the central phosphorus atom has $\qquad$ nonbonding and
$\qquad$ bonding electron pairs.
A) 3,1
B) 3,3
C) 1,2
D) 2, 2
E) 1,3

83 8) The bond angles marked $\mathrm{a}, \mathrm{b}$, and c in the molecule below are about $\qquad$ and
$\qquad$ , respectively.

A) $120^{\circ}, 120^{\circ}, 109.5^{\circ}$
B) $109.5^{\circ}, 90^{\circ}, 120^{\circ}$
C) $120^{\circ}, 120^{\circ}, 90^{\circ}$
D) $90^{\circ}, 90^{\circ}, 90^{\circ}$
E) $09.5^{\circ}, 120^{\circ}, 109.5^{\circ}$

75 9) Using the table of average bond energies below, the $\Delta H$ for the reaction is $\qquad$ kJ.


| Bond: | C $\equiv \mathrm{C}$ | C-C | H-I | C-I | C-H |
| ---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{D}(\mathrm{kJ} / \mathrm{mol}):$ | 839 | 348 | 299 | 240 | 413 |

A) -217
B) -160
C) +160
D) -63
E) +63

74 10) The F-N-F bond angle in the NF3 molecule is slightly less than $\qquad$ -.
A) $90^{\circ}$
B) $109.5^{\circ}$
C) $180^{\circ}$
D) $60^{\circ}$
E) $120^{\circ}$

90 11) Of the bonds $\mathrm{C}-\mathrm{N}, \mathrm{C}=\mathrm{N}$, and $\mathrm{C} \equiv \mathrm{N}$, the $\mathrm{C}-\mathrm{N}$ bond is $\qquad$ .
A) weakest/shortest
B) intermediate in both strength and length
C) strongest/shortest
D) yeakest/longest
D) strongest/longest

53 12) Which of the following statements is true regarding $\mathrm{Ne}_{2}{ }^{2+}$ ? Refer to the MO diagrams attached to this exam if necessary.
A) Its bonding order is 0 and it is not expected to exist.
B) Its bonding order is 1 and it is not expected to exist.
C) Its bond order is 0 and it is expected to exist.
D) Is bond order is 1 and it is expected to exist.
E) Its bond order is $3 / 2$ and it is expected to exist.

Consider the following species when answering the following questions:
(i) $\mathrm{PCl}_{3}$
(ii) $\mathrm{CCl}_{4}$
(iii) $\mathrm{TeCl}_{4}$
(iv) $\mathrm{XeF}_{4}$
(v) $\mathrm{SF}_{6}$

76 13) In which of the molecules does the central atom utilize $d$ orbitals to form hybrid orbitals?
A) (i) and (ii)
B) (iii) only
C) (i) and (v)
D) (iii), (iv), and (v)
E) (v) only

70 14) Of the bonds below, $\qquad$ is the least polar.
A) $\mathrm{Na}, \mathrm{S}$
B) $\mathrm{Si}, \mathrm{Cl}$
C) C, F
E) $\mathrm{Na}, \mathrm{Cl}$


The diagram below is the Born-Haber cycle for the formation of crystalline potassium fluoride.

15) Which energy change corresponds to the electron affinity of fluorine?
A) 2
B) 5
C) 6
D) 1
E) 4

59
16) There are $\qquad$ $\sigma$ and $\qquad$ $\pi$ bonds in the $\mathrm{H}_{2} \mathrm{C}=\mathrm{C}=\mathrm{CH}_{2}$ molecule.
A) 6,4
B) 2,2
C) 4,2
D) 2,6
E) 6,2
17) The halogens, alkali metals, and alkaline earth metals have $\qquad$ valence electrons, respectively.
A) 7,4 , and 6
B) 1,5, and 7
C) 8,2 , and 3
D) 2, 7, and 4
E) 7,1 , and 2

38
18) Choose the compound below that contains at least one polar covalent bond, but is nonpolar.
A) $\mathrm{ICl}_{3}$
B) $\mathrm{SeF}_{4}$
C) HEN
D) $\mathrm{CCl}_{4}$
E) Both B and C are nonpolar and contain a polar covalent bond.

88 19) Elements from opposite sides of the periodic table tend to form $\qquad$ .
A) covalent compounds that are gaseous at room temperature
B) Jonic compounds
C) compounds that are gaseous at room temperature
D) covalent compounds
E) homonuclear diatomic compounds

68 20) There are $\qquad$ unpaired electrons in the Lewis symbol for an oxygen atom.
A) 3
B) 1
C) 2
D) 4
E) 0

94 21) According to VSEPR theory, if there are five electron domains in the valence shell of an atom, they will be arranged in a(n) $\qquad$ geometry.
A) linear
B) octahedral
C) trigonal planar
D) tetrahedral
E) rigonal bipyramidal

84 22) There is/are $\qquad$ $\pi$ bond(s) in the molecule below.

A) 6
B) 2
C) 0
D) 1
E) 7

57 23) Use the molecular orbital diagram included with this exam to determine which of the following are paramagnetic.
A) $\mathrm{Ne}_{2}{ }^{2+}$
B) $\mathrm{F}_{2}{ }^{2+}$
C) $\mathrm{O}_{2}{ }^{2+}$
D) $\mathrm{O}_{2}{ }^{2-}$
E) None of the above are paramagnetic.

95 24) The hybridization of orbitals on the central atom in a molecule is $s p$. The electron-domain geometry around this central atom is $\qquad$ .
A) tetrahedral
B) linear
C) trigonal planar
D) octahedral
E) trigonal bipyramidal

79 25) The Lewis structure of carbon dioxide is given below. The hybridization of the carbon atom in carbon dioxide is $\qquad$ -.

A) sp
B) $\mathrm{sp}^{2} \mathrm{~d}^{2}$
C) $\mathrm{sp}^{2}$
D) $\mathrm{sp}^{3}$
E) $\mathrm{sp}^{2} \mathrm{~d}$

65 26) Why don't we draw double bonds between the Be atom and the Cl atoms in $\mathrm{BeCl}_{2}$ ?
A) That would result in more than eight electrons around each chlorine atom.
B) That would result in the formal charges not adding up to zero.
C) There aren't enough electrons.
D) That would give positive formal charges to the chlorine atoms and a negative formal charge to the beryllium atom.
E) That would result in more than eight electrons around beryllium.

7 27) In the nitrite ion $\left(\mathrm{NO}_{2}^{-}\right)$, $\qquad$ .
A) poth bonds are the same
D) both bonds are single bonds

The bonds are equivalent because of resonance.
C) both bonds are double bonds
D) there are 20 valence electrons
E) one bond is a double bond and the other is a single bond

69 28) Which of the following is a correct description of $\mathrm{SeF}_{5}{ }^{-}$?
A) Trigonal bipyrimidal shape and non-polar
B) see-saw shape and polar
C) square pyramidal shape and ono-polar

D square pyramidal shape and polar
E) square planar shape and non-polar

71 29) What is the hybridization of the central atom in $\mathrm{XeF}_{4}$ ?
A) $s p$
B) $s p^{2}$
C) $s p^{3}$
D) $s p^{3} d$
E) $s p^{3} d^{2}$

21 30) An antibonding $\pi$ orbital ontains a maximum of $\qquad$ electrons.
A) 1
B) 2
C) 4
D) 6
E) 8

No orbital can have more than two electrons. You forgot that there are two anti-bonding pi orbitals.

## Answer Key

Testname: CHM2045 F13 E2 A

1) C
2) $C$
3) $E$
4) C
5) C
6) D
7) E
8) E
9) A
10) B
11) D
12) D
13) D
14) $D$
15) E
16) E
17) E
18) D
19) B
20) C
21) E
22) D
23) $B$
24) $B$
25) A
26) D
27) A
28) D
29) E
30) B
